e — — e —

G/ e/ 775=6

! Maoster’s Thesis,

e .i
W< 7] @Wﬂj :!

[
» b |
; STRUCTURED ANATLYS1IS aND DESTGN OF A
= = =
§A'l‘l~‘.I.I.I'N". gImH.ATOR ,
= = lh

‘F
@ FIT p:/EE/'."?S"(‘]

JUN T o

|
JLIB UG
o

Approved for public release; dlstribution unlimited.

)35 443

GE/EE/775-6

STRUCTURED ANALYSIS AND DESTIGN OF A

SATELLITE SIMULATOR
TRESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Alr University
In Partial Fulfillment of the
Requirements for the Degree of
“Eat”w&-——«—-u~. Master of Science
IS .
e ;-s{d? ?S'

UNANY QI !

L1y
JUSTIE I L I0K !

BY

CISTRIAUNICN Ry g a0 AR CUAN

Blst, LAy Sl

—ae L by
Kenneth I, Marvin, B.S.K.5.
Captain USAF

Graduate BElectrical Engilneering

September 1977

Approved for public release; distribution unlimited.

Preface

This theslis presents an effective application of a structured
apalysis and structured design methodology to a complex satellite
command system. The methodology used combines features of three
different design techniques. The key to the successful develop~-
ment is the preliminary design which gives a compl2te requiremente
definition in an understandable diagram form. A series of these
diagrams are combined to form an activity model and a data model
of the simulator using a top-down design strategy. The activity
model is the starting point of the design refinement. A first cut
structure chart is drawn directly from the activity model., A data
flow graph is then created which in turn is converted into a re-
fined structure chart. The refined structure chart is the primary
vehicle which facilitates the programming phase, Even though the
programming has not been done in this thesis, a structured analy-
s8is and design has heen performed that presents a satellite sinu~
lator that is modifiable, understandable, and free of implementa-
tion constraints,

I thank ny thesls advisor, Captain Peter ©. Miller, for his
profsseional influence and guidance throughout this project. Thanks
must also be exiended to Captain J. B. Peterson for shering his
expertise with me in this endeavor. A very special *hanks goes
to my wife, Maryanne, and to our children, Kevin and Cindy. Vith-
out their patience and love this effort would have been wasted.

I cannot close without thanking God whose eternal wisdom has pre-
velled throughout,

Kenneth I.. Marvin

i1

Contents

Prefac® « o« o o o s o o % o 5 o 5 o » »

I.iSLofFié_’,UI‘OG....-.....a.

1ist of Tables e o o o o o o o o o o o

AbStract o« o ¢ o ¢ o o o o 6 6 s o o

I,

II.

Iv.

Introduction « o s ¢ o o ¢ o o @

Objecttves * » L] - * [] L] L] * -
SCOPG L] L * * L L] L] L] L L] L] L]
Plan of Development .+ o o o &

Requirements Definition « « o « &
Introduction « « o o o o o » o
Context AnalysSis « « o o o o o
Design Condtrainic ¢« « o o o @
Functional Specificaticns « o
SULNMATY o o o o o o o o o » o

Preliminary Deciffn « o o o o o o

Intrcduction .

L] L] L] L] L] L d L]
Diagram Syntax o« ¢« o o o o o o
Reading SeQUENCC o o o o o o o
Activ:ity Model o o o o o o o @
Data }0del o o o o o ¢ o s o @
Sumal‘y e o e ® o & o o o o o

Design Refinement « o o o o o o o

Introduction « « o« « o o o

Mrst Cut Structurs Chart .+ .
Intermediate Bubble Chert . .
Refined Structure Chart . .
SUIMMATY o o ¢ o o o o o o o a

DGSign Analy'SiS e o o o o6 o o o o

IntrOduc tion ™ o' e © o o o o o
summary [) L] L] L] L] L] ® [) L] [) L]
Conclusions and Recommendations

Bibliography.............

Vita

. e & o] . . e o o [[L] [] L] . [

i1

[) L] » L -

3 L ¢ o

> [) L I

Page
ii

iv
vi

vii

—-—

NeIL G e 20N, B, BNV ¢! AN

=
d

11
11
13
14
L7
70

71
71
73
77
81
¢3
9k

W
e
96
97

98

List of Figures

Figure Page

1 Module/Interfaces Arrow Conventions e o« o « o o o o o 12

2 OR Branch and Join Structur€s .« « « o o o o« o o o o « 13
‘ B Simulate Srucecraft o o o o o ¢ o ¢ o s o a s 6 o o o 15
| 4 Simulate Spacecraft o« o o o o o o o s s o s s s o s o 17
5 Process Input Word « o o o o o e o ¢ o o o ¢ o ¢ o o o 19
€ Determine Type of INnput Word « « o o o o o o s o o o o 21
7 Format Spacecraft Command o s o s o o o s o s ¢ s o o 23
8 Perform jeneral Validity CheclkS o o« o o« e o o o o o o 25
9 Determire Type of Command 4+ « 5 o o« o o o o o o o 5 o 27
10 Ferform Command Validity ChecCkS o o o o o o o o o o o 20

11 Update Jehicle Status e o & 8 & o © o & o s 5 s o e ® 31
12 Deternine Type of Modification Required o« o« o« o ¢ o o 33

'|
1 Ferform Update e 6 & 8 o © ¢+ © © o ® o o o o o & o o o 35]

14 Generate CV WOrdS o o o o o o 2 o o o o o o s o o s o 37
15 List Types of Format “IIOr'S o « o o o o o s o s o s o 3§
16 List Types of Sequencs EFTOTE o o o o o o o o o o o o 41
17 Determine Proper Vehicle 'eSSages o c¢ o o o a s o o o 43
18 Create Output MeBSAZES o o o o o o o s o o & o o o o » 45
19 Simulate Data 4 ¢ 4 o o« o+6 ¢ 2 ¢ 5 o s o 2 ¢ o o o o 48
20 Simulate Data o o o o o o o o 2 s s o o o o s o o s o 5
21 Input WOrdS o o s o ¢« o o o o o ¢ o » o o o o 2 s o = 52
22 Spacecralft Uplink Word « » o o o ¢ ¢ o s o o o o s & o 5L

23 Format EIFOr'S « o o o o o ¢ o s o« s # s ¢ o 3 8 o & 56

24 Status Modification Word o« o o s s ¢ o ¢ o ¢ ¢ s o & o 58

25 Formatted Spacecraft Command « « o + s s o s s s 3 o« o 60

iv

List of Ficures

Flgure Pare

26 Tequelice TIXLOr® & a s i w e & o 4 & Sl mle & 5 & & o & ¢ 62
27 Current Status DAtA & o ¢ o 4 o 5 o 5 o ¢ o o o o o s o b6k
28 Vehicles Mes®age Data o« & « & 5 ¢ %' 6 5 s & 5 s 0 8 58" b6
29 Cutpub MCSEUECS o o o o o o o o o o o o 6 o s 0 o 0 s = 068
30a Tirst Cut Structure Chart o o o o o o « o o o o o o o o 4
30b Updatle Jehicle Status o o o o o o o o o o ¢ a o o o o o 75
3Cc Create CV VJOPdS o o o o o o ¢ o » ¢ o o ¢ s o » o o o o 76
>0d Crsate Dutput 10353585 o o o o o o o o o o o o & o o o 77
31 Internediate Tubble Chiulft o o o o o ¢ ¢ o o « o o o o o 80
2 Top Level Structure « o o o « o » ¢ 6 o o 2 o o o ¢ o o 82

STATIICD todule and SubordinitcsS o o o o o o s o o o o 83

M
(2

34 Spacecrafl Command Afferent Branch o« o o o o o o o o o £5
35 VEHSTAT Module and Subordinates o o o« o o o o o o o o o 88

\H
(o

CV“’ORDS Nodule and Sllbordin&tes ® & © &« e e o & o e o o 90

k9]
~3J

CUTMESS Module and Subordinalts o o o o o ¢ o o o o o » 32

1
II
111

v

list of Tablen

First Cut Structure Chart Parametoers o s.6 o o o o o 78
Spacecraft Command Afferent Branchk Parameters . . . 86
VEESTAL TRrgu®b88™ s @) o) 9 @@ 9 5P @ 8 0 @ 8w & 05 OF

CVW\\‘\‘DS‘ Paramo L(‘Pl‘ e e 8 8 8 & 8 8 © & 8 ° 8 o & o ()]

vi

e ——————— R el ol m——

GE/EE/775-6

Abstract

The problem addressed in this thesis is the analysis of a
complex satellite command system and the design of a software sim-
ulation of that system. The problem is solved in three steps.
First, a written requirements definition establishes a sound view-
point and purpose on which the analyet can base his design. This
requirements definition exvlains why the simulator is to be cre-
ated, how it is to be cconstructed, and what it is to do. Second,

a top-down strategy called "structured analysis" is applied to
create the preliminary design. The structured analysis is pre-
sented in a blueprint-type language with activity and data models.
The models represent graphically the functions performed by the
simulator and the information upon which those functions act. A
inal design refinement is performed with a structured design meth-
ndology called "transform analysis.'" Thse structure charts darawn
during the transform analysis reveal system characteristics which
1llustrate design quality. The activity model acts as & catalyst
to a successful transition from a top-down analysis to a structured
design which can be evaluated. The resulting simulator design,
with minor revisions, satisfies the desigrn goals establishel for
the rroject. The metlodology used is highly recommendsd for the

analysis and design of any software system.

vii

w

STRUCTURYD ANAILYSIS AND DESIGN OF A

SATELLITE SIMULATOR

I. Introduction

Objectives

This thesis presents a "structured" development of the requlre-
ments and the design needed to create a software simulation of an
operational satellite., A good development technique iec required
to make the final programming easier and more understandable. The
primary objective of this thesis is to avoid all of the negative
effects of a premature system design (Ref 4:2). To meet that ob-
Jective, it 1s necessary to do & complete and understandable require-
ments analysis of the system to be designed. A requirements anal-
ysis is the first step towards the design of a high quality system
that is efficient and reliable.

Any quality development project, be it hardware or sorftware,
must be based on an orderly, controlled, and disciplined methodol-
ogy, (Ref £:5). While searching for such a methodology, the top-
down design phases of the software life-cycle are considered. The
first two cteps in the life-cycle are classified as "system require-
ments" and "software requirements" (Ref 2:3-4). A thorough expla-
nation cf the system and the functions it performs must be present-
ed. This explanation is given by a Requirements Definition as de-
fined by SorTech, Ince. (Ref 4:4). The Requirements Pefinition is
the first portion of SofTech's Structured Analysis and Design Tech-

nique (SADT). It is this portion of the SADT that is used in the

requirements analysis and preliuminary design of the satelllite sim-
ulator. Requirements Definiticn deals with three subjects: context
analysis, design constraints, and functional specifications. These
subjects give a definition of the requirements for an efficient

and long-range, cost-effective system. The context analysis explains
why the system should be created and why certain technical and op-
erational capabilities set the boundary conditions for the systien.
Design constraints explain how the system is to be constructed.

The objective here is not to specify which things will be in the
system, but only to set limits for selection of those thirgs at

a later time. The functional specifications are of primary inter-
est. These specifications give only the boundary conditions for
requirements taken up in the desisn phase (Ref 6:5-6).

The next phase in the softwarc life-cycle is the preliminary
design. The objective is to define system requirements more explic-
itly and to present a functional analysis that is conceptually com-
plete. During this phase in the development, a design is produced
that makes coding, debugging, and modification easier, faster, and
less expensive by reducing complexity (Ref 9:115), After the pre-
liminary design, a departure is made frowm the SADT. This departure
is required to provide a design refinement that can be evaluated.

A design technrique called "transform analysis'" is performed which

has characteristics that reveal design quality (Ref 10:254-300).

The combination of the preliminary design based on structured anal-

ysis and the design refinement based on transform analysis creates ﬁ

a satellite simulator design that is modifiable, understandable,

and free of implementation constraints. 1

The sponsor of this thesis is the L4000 Aorospace Applications
Group (SAC), lccated at Offutt Air Force Base, Nebraska. They are
responsible for command, control, and analysis of the weather sat-
ellite (Block 5D), which is to be simulated., Operational require-
ments place a limit on the amount of software development that can
be done "in house." A need eoxists for a simulator that can be used
as & training device for satellite controllers and as an analysis
ald for satellite data analysts. The purvcese of this thesis 1s

to provide a design of such a simulator.

Scope
The initial investigation of the satellite system shows that

a simulation of all the satellite functions is beyond the scope

of this thesis (Ref 1). However, a simulation of the spacecraft
conmand "uplink"” and command verification (CV) "downlink" is of
primary importance. A simulator is required that will accept space-
craft commands in a realistic format, simu’ate performance of the
proper functions in response tc those commands, and maintain rec-
ords of spacecraft status (i.e. teiemetry point values, transmit-
ters on or off, etc.), which can be modified at user request. In
addition, the simulator should be designed in a modular fashion

to ensure the modifiability, maintainability, and understandadility.
The structured analysis and design tecliniques used in this devel-
opment effort present a modular system that is functionally inde-
pendent. This independence makes it easy to add or delete modules
to further enhance the realistic nature of the simulation at a later

time. No attempt is made to do the actual programming required

to implement the simulator. However, the structured techniques
used to perform the analysis and design will facilitate the final

programming phase,

Pl of Development

Chapter II is a presentation of the Requirements Definition
with emphasis placed on the functional specifications. Chapter
IXI presents a Preliminary Design of the simulatcr in the form of
activity and data models. The approach used in both of these chap-
ters is based on the technique prepared by SofTech, Inc. called
"structured analysise.'" Chapter IV presents a refinement of the
preliminary design, which is illustrated with structure charts and
data flow graphs (bubble charts)., These charts and graphs are
used to do the transform analysis. Chapter V contains a summery
of results obtained in this development as well as conclusions and

recommendations.

o

ITI. Reyuirements Definiticn

Introduction

The phase ot the software life-cycle most often abused, or
neglected, is the Requirements Definition. The Requirements Def-
inition presented in this chapter is in a written form to show a
distinction between it and the illustrative functional design pre-
sented in Chapter III. This order of development allows the ana-
lyst to establish a sound viewpoint and purpose on which to base
his first phase of design. The lack of a Requirements Definition
usually results in rising costs, missed schedules, waste and dupli-
cation (Ref 4:2). In addition, the elimination of this important
step results in the absence of a useful documentation package.

This creates the most common problem with large systems in the Air
Force: a lack of understanding by the engineer who takes over the
projects He typically must spend an inordinate amount of time nearly
"redeveloping" the system to bring his level of understanding to

a point where he can be productive,

Included in this chapter is (1) a context analysis, which
tells why the simulator is to be created, (2) a set ol design con-
straints, to tell how the simulator is to be constructed, and (3)

a set of functional specifications that describe what the system

is to doe.

Context Analysis

To better understand why a satellite simulator is to be cre-

ated, an explanation of the environment (context) in which it is

to be used is needed. This explanation is given in the context
analysis which follows.

The 4000 Aerospace Applications Group (SAC) is responsible
for the command and control of weather satellites in support of
Global Weather Central at Offutt Air Force Bese, Nebraska. It is
alsc responsible for monitoring spacecraft telemetry and data to
aid in detection of any anomalies that may have occurred during
its orbit. Over the years these satellites have increased in com-
plexity and produce more data for analysis purposes, This has in-
creased the need for a good, easy to use simulator to aid in ancm-
aly analysis and to function as a training device for new system
controllers.

To perform as an analysis tocl, the simulator must display
current telemetry point values upon request, It must alsc provide
the analyst with current status information about tranesmitters,
central processing units, and sensors on the spacecraft. This in-
formation must be provided after each spacecraft command igfgiven
to the simulator and upon request from the user,

The simulator must accept its input in the same format that
is transmitted to the satellite, This formatting i5 currently doue
by an existing hardware device known as the 5D Interface (5DI).
Commands will be input through the 5DI to the simulator. In addi-
tion to the ocutputs mentioned above, the simulator should provide

the proper command verification words and an explanatory message.

Design Constraints

This section is a summary of the conditions specifying how

the simulator is to be constructed. No attempt is made to specify
input or output devices. Those details should be considered at a
later stage in the design (Ref 4:4),

There are four fundameatal goals which should be considered
by the software engineer when he begins his development process.
They are (1) modifiability, (2) efficiency, (3) reliability, and
(4) understandability (Ref 5:89)., These are the constraints con-
sidered in the process of selecting the analysis and design tech~-
niques used. The techniques selected are SofTech's structured a-
nalysis for the preliminary design and a structured design method

for the design refirement.,

Functional Specifications

Functiovnal specifications are impcsed on the functional ar-
chitecture of the system. They differ from system architecture
specifications because they outline the purposes of the system in-
stead of giving the languages, transmission links, and record for-
mats that arc in the system (Ref 4:8). The following functional
specifications are a first step towards the creation of the func-~
tional architecture. The next chapter presents the functional ar-
chitecture as the preliminary design of the simulator.

There are four main functions that should be performed by
the simulator. It should (1) process the input word, (2) update
the vehicle (simulator) status in response to the input word, (3)
create the appropriate command verification words, and (4) create

an output message informing the user what action has been taken,

A brief description of each of those functions follows.

Process Input Word. A satellite simulator input should be

classified as a spacecraft urlink command or & user command. A
user command modifies the current vehicle status data, i.e. change
a telemetry point value, add or delete a status table, etc. A space-
craft uplink command must be properly formatted before it can be
executed. The formatted command simulates satellite functions ty
updating status data and creating the appropriate command verifi-
catlon message. The formatted command must first be checked for
parity and wordlengthe. If an error is detected, it is saved and
used later by the simulator to generate the proper command verifi-
cation words and output messages.

After the initial format checks are made, the spacecraft com-
mand type must bo determined. This determinatirn will influence
the kind of secuence checks that need to be performed. Some space-
craft commands require a series of sub-commands n a specified order,
while others require a specific time interval between them before
they can be executed,

The processing just described will produce a user command
in the form of some type of status modification word, a spacecraft
command that will contain some errors (invalid command), or a space-
craft command that is error-free (valid command). Ore of these
inputs will be passed to the remaining functional activities for
aprpropriate processing.

Jpdate Vehicle Status. Only a user command or a valid space-

B LT e ———— - -

craft command effects the current status information. An invelid

command is only acknowledged by the command verification function.

When the required modification is determined, an update request

is issued and the necessary update function is performed. The new
status information is then given to the user.

|
!
|
Create Command Verification Words. Previously detected er- 1

rors should be listed and used to determine the applicable command
verification (CV) codes. These CV codes are transmitted via the
downlink from the spacecraft arter a command has been received.

To make the simulator a more valuable analysis/training device, ‘
an explanatory message should be output with the CV code. There
are also verification codes associated wit! valid spacecraft com-
mands which should be handled in the same manner as the erroneous
command codes,

Create Qutput Messages, The CV words are now translated and

a meaningful output message is produced. Any status modifications
are noted with a specific update message. The messages are assem-

bled and a complete and easily understood output text is produced.

Summary

This chapter presents a context analysis of the problem, de-
sign constraints for its solution, and functional specifications.
The context anilysis forms a perspective from which to view the
overall problem. An effort is made not to let the context analy-
sis be functional specifications, however, the context analysis
and functional specifications are closaly related and ir some cases
it is difficult to separate the two. The design constraints are
imposed by the desired design goals. Analysis and design techniques
are selected that shouid make the design meet those goals. The

functional specifications are given in 1iodular sections which are

the four basic units needed for construction of the rext lovel of
design. This construction consists of the SADT activity and data

models presented in the next chapter.

10

III. Preliwninary lDesisn

Introduction

T“he activlity and data models presented in this chapter rep-
resent the results of many attemits to illustrate the conceptual
ideas conveyed by the functional specifications. Those medels,
organirzed as a sequence of diagrams with supporting text, form the
proliminary design,

The activity model is presented first, followed by the uata
model. These models graphically revresent the functions performed
by the system and the data upon which the functions act. Each model
contains ovoth data and activities with complimentary emvhases,

The combinatlon leads to "a much richer understanding of the sub-
Ject than is afforded by a single model' (Ref 7: Chap. 2, p. 9).
Each level of modules is a more detailed decomposition of the level
above, This structured decomposition is the substance of top-down
design. The following is a brief explanation of the diagram syn-
tax to aid the r- der in understanding the models. A more detailed

discussion can be found in reference 7.

Diagram Syntax

Structured Analysis diagrams are composed of boxes and &axrrows
which are a vehicle for clearly expressing activity and data mod-
ules (Ref 7: Chap. 3, pe 1). Figure ! illustrates examples of the
activity and data modules, The "mechanism" arrows are shown for
completeness but are not used at this stage of the design since

they are intended to represent the functions or hardware needed

11

to realize the module. The "multiple branch" (exclusive OR) is

{ used to indicate multiple, but not simultaneous outputs. The
"multiple Jjoin" indicates multiple, but not simultzneous inputs.
Both conventions are shown in Figure 2.

In general, data and activitiy modules are decomposed into
more detalled data and activity modules., Each module that is de-
composed is referred to as a "parent" module and modules that re-
sult from the decompceition are the "children." To relate the

arrows of the children to those of the parent, an "ICOM" code is

CONTROL CONTROL
(data) (activity)

INPUT — g ACTIVITY OUTPUT INI?UT . DATA‘ L R UTPUT
(data) TITLES (data) (activity) TITLE (activity)
MECHANISM MECHANISM

{processor) (store)

Figure 1. Module/Interfaces Arrow Conventions

is used. The acronym is derived from the arrow names: input, con-
.rol, output, and mechanism. FEach arrow at the parent/child tound-
ary is uniquely labeled with the letter I, C, 0, or M with prefix
and suyfix numbers. The prefix number refers to the module within
the child and the suffix ﬁumber refers to the top-down or left-
right order of the arrow on a module. The boundary is the outer

border of the activity or data diagram. Each diagram is called

12

Pﬂ-—-————.—-——-——_—“

__A_.» -—-L———’u
L_'i—_». ._..._C___._,
two-way branch three-way join

. . I

Figure 2. OR Branch and Join Structures

a "node."

Reading Sequence

|
!
The following is a suggested reading sequence, looking at 1
each module in top-down order: |
1. Scan the boxes to get a first impression. i
2. Rethink the message of the parent module. Observe the l
boundary arrows. !
Je Refer back to the current module, checking arrow attach-

ments between it and the parent,

4. Consider internal arrows. Consider boxes from topr to

bottom and left to right.

5« Read the text.

g i A TRl e Rk — - - -, (T S R— . o .
T " - . R e et A R pep—

Activity liodel

Before reading the activity diagrams, it is recommended that
the Y"node index" given below be scanned. This index serves as a

table of contents, and gives an overview of the decomposition struc-

ture.
Node Title Page
A-0O Simulate Spacecraft 15
A0 Simulate Spacecraft 1%
Al Process Input Word 19
A1l Determine Type of Input Word 21
Al2 Format Spacecraft Command 23
Al3 Perform General Validity Checks 25
A1y Determine Type of Command 27
Al5 Perform Command Validity Checks 29
A2 Update Vehicle Status 31
Az Determine Type of Modification Required 33
A22 Perform Update 35
A3 Generate CV Words 37
A31 List Types of Format Errors 39
A32 1List Types of Sequence Lrrors 41
A33 Determine Proper Vehicle Messages L3
Al Create Output Messages 45

14

N RO,

T P Y e wew
A —

.

éd—.q-r-

1 W P pap—

18I0e%edg 8}BTRITS *¢ odnSTJ

0-¥ tepoy
E83BESIY pIopm
r.\ nednn jrduy
;.1..\‘
LAVHI4OVdS
JLVIOWIS
i !
adf], paop 3ndu]
PUBLWO J) Jo sdL],

y38usplom/Ly ta8g

15

A-O Text: An input word (I1) is received by the simulatcr. That

word is either a user command or an uplink spacecraft command, but
not both at once. The activity perforred ("SIMUJATE SPACECRAFT")

18 constrained bty the type of input werd (Cl), or by the parity,
wordlength (C2) and type (C3), if the input is a spacecraft ccmmand,
The final product of the activity is a complete and understundable
message to the user (01) for problem analysis or spacecraft inter-

rogation.

16

R i i G

N
godegsol
andyno

r

puemmo)

€0 22 1D

1JvJIseoedg e3vTnuUTy *% 2andTJ
- o OV :epoN
- _
gadessa) leg
andyano |
21€8d) _ h
A A A ! SpXoM
R
| _ ﬂ\v_wm spaop
| UOT3edTITJaA
m “ ! puUBTWO)
| _ _ 83eIausn
] o
L |
| 1 1 _
| _ _ anjelq
xmﬂw s aT2TyYaA
. gnielg _ ejepd(|
_ jusgang
| rf A i H puUBmWO)
ﬁ ﬂndnsuu_ _ PTTEA pJIOM
. _ - ﬂﬂﬂdan | _ | H T andu
! T AU — __ = ._rlu- f
\ h | _ _ _ pxop ndul
——— e -~ ! 9882034
MOT3IBITITPCOR L
gn3eis _ _ A
* [
|
llhmVHw e s .IFF[I paog andug
q3BueTpIon/K3Tawd odiL oz | 3o edAL

17

A0 Text: An input word (I1) is received by Procees Input Word [1).
That word is either a user command to modify vehicle (simulator;
status or an uplink spacecraft command. If it is a user command,
it is passed as a status modification (101) to conirol the Update
Vehicle Sta.us (2) and Create Output Messages (4) activities. 1If
the input word is a spacecraft command, two constraints determine
the type of output. These constraints are parity/wordlength (C2)
errors and command type (C3). If there are no format (parity/word-
length) errors, a valid command (103) is used to control the other
ectivities. Another possibility is an invalid command (102) which
results from a parity/wordlength error. Update Vehicle Status (2)
uses the status modification, the valid command, or the invalid com-
mand to determine the required vehicle status updates. The current
status (20i1) is used as part of an output message (401). A valid
command is acknowledged by a Command Verification (CV) Word (301).
Generate Command Verification Words (3) produces thzse CV words

and they aro used by Create Output Messages (4), along wlth the
constraints shown, to produce an output message responsive to tho

particular input word that is being processed.

18

pIoy Indul sses01d °G SInITJg

8d/£], puwruwo)

“ - LV :tepoN
_ | | S sosud
_ / L£yTpTTeA o N
_ ¢ pUBHEO) 4
_ ﬁnursoui — | WJI0jd8d, puewwo)
PFIRA| | A 513Toe8ds
\ | ! _
_ J puenumo) ~
_ - Jo ead4y
r \ autwIajaq
unvsaoo _ b g ; puruwmo)
19 | _ PITEAUI _ m?mxomso S="pe33emrog
v ol) STPTTRA i
! [%- TeJsusan |
[y = _ WI0FI9d | . N
| / 18WIO] &
andug 2]
9T31oedg puEwmos
Jeaseoedsg - R
PJOM
FIPEGM Pﬂﬂ.ﬂH'L
UOT3EITITPON sN3BIS puemwo) _ 1
W 31Jeao9oedg - pIom 3ndul
S 5 1 30 edAg -
| - suTwJIs3aq
i
_ yj3ue_, 9
w §u I-U.HOW».\%PH:H.N&\
|
|

€0 20 : 10

Al _Text: Determine Type of Input Word (1) is primarily concernad
with whether an input is in the format necessary to simulate an
uplink spacecraft command (102), or in a user command format to

be processed as a status modification (101). The spacecraft command
is first formatted properly for use by the simulator. The formatted
command (201) is passed to the remaining activities for processing.
After the command is checked for parity/wordlength (C2) it is de=-
coded to determine the command type (C3 . Finally, it is checked
for proper sequencing. Determine Type of Command (4) perferus its
function on a command even if it contalns a format error. Perform
Command Validity Checks (%) outputs an invalid command (501) or a

valid command - 502) to be used by the next activity.

20

pacy 3ndul Jo adfLy surwaezsq °C aInIT4d

LLY :epOj
puUBEEO)
33eaosoedg ¢ pIoM
HUTTAR |eg
_ 1iexosdeds b
pBay

&
' UOCT3IBITITPOA
_ gnie3g

Laul — \ N
= /A WOTI®OTS TPO;
) - gnjes
y wI0jIed —_— -
3ndur . Y
913 700dg A uzmqulIMHIA\
{
e TLO M
uoT3Ed o} »
L& wawum 8N381S pPwe 11
A
\. o
paog 3ndu k\c
3o oth
l

A1l Text: If the Input Word (I!) is a user modification, Read Sta-

tus Modification Word (1) outputs a status modification request
(101) which controls Perform Status Modification (2). Upon receipt
of the particular request, a status modification (201) 1s output.
Upon receipt of a word in the uplink format, activity (3) reads
the tpacecraft urlink word and outputs the spacecraft command (302)

for use by the next activity.

22

e Tl . ok e

ke ik e

i il B e e e B e e
» x

.

e

XE

R

puesun),
Pe313vuIOg

3Jeavededsg

O—

A

puswwo) 3JFBJI%00vdg BWIOL */, eandTg
o o 2LV :epoy
muumr
pPuUBWLLO)
pajjeuaod
83039
° d
2 (s114 6) £S5 RRCRT
N PIOM
FO FT®H ~
g80JIpPYV 1881 peey

u»wn\ﬁ\r

j3Jexoodedg

b (8379 91)
pIoK

30 FT®H
48374 pwey

1|I|r|

ﬂnuaaaﬁkuﬁLuT‘

1jedsesedg

84/

23

T T e T R AT R T .l.ll‘l!‘i‘j
v

Al12 Text: After it is determined that the input word (11) is =

spacecraft comrand (C1), the first 16 bits of the word ars read

in activity (1) and the spacecraft data (101) is output. The re-

| maining nine Lits of the word are read in activity (2) and the

i Spacecraftt address (201) information is passed., Both of these out- '

puts are stored by (3) and they are the formatted command (301),

gyoay) £3TPpTTeA TwJI9UaD wIojaed °Q eandig

¢LY :9pOH
- JoIxaqg
18WIO0J 4
K godXl]
ﬂ o J0xxg
i sutwIel ag
wp A
: 2
: - > £37a8d e
. ,:Em\#\ %2070
£37aed % wn
: o
E . puswmoy
pallenIod
M;
1 :
_ \

— £

q3fusTpIOL =
xnﬂ\r %2042
J0JJ7

- y3FusTpIom

q3dueTpIon /L3 TIed

12

A13 Text: The formatted command (I1) is input to both activity

boxes (1) and (2) for a wordlength check and a parity checke.
There are various error codes that are n2ssociated with incivid-
ual commands. After the error checks have been made, any errors
that have been found are used to determine the codec that apply

to the particular command and error (3).

26

s

puemmo) JO

odLl, sutmIslsad *6 eanITJ

W1V :8poN
pueLmO)
5 pe338wIOg
op0) \..\
10 = = 1dnaaejur o ‘T
\. 0do peey
gpION
pPUREWOY A A »
_ pUewwC)
001]~J0IIT
f iy ;
& BIOJIY
od Ay, b\ 1 38muI0q
PUeWwO 1ep
pusmumo
20 LT (& o
J0IIH
1elI0g

27

N

e

it rgnafurinay

e A

Al4 Text: The command type (C2) must be determined for all com-
mands., If format errors (Ci1) exist, they arc passed as indica-
tions of an erroneous command (101), or an error-free command (102).
The CPU Interrupt Code (CIC) is read (2) from the formatted
command (I1). This code will re.ate to a certain type of command.
The command words (01) that are output are either invalid or val-
id, depending on ahether a format error has or has not been de-
tecteds These determinations must be made before the particular

command can be executed.

R R ——

p— . R R R R R R R R R R R R R IR =

g¥29U) K1TDT(¥A PUEWWO) WIOFJIB8d °*0Of oandTJd

STV T8POR
4
10 SUTTTL
PUBWWO) g
Hoeq)d g
.- A % J0IIq
o 03 eouenbeg
2
Jutouenbag
< pUBWLO)) f— ~
1 Hoeyd
A &
J0XIq
§90JIpDPY
l
o g933ppY I
ado oeyd
puUsw@oy
& N Pe3ICW@IOS
puURwWWOo)
oTsToedg ™ 1

A15 Text: Fach formatted conmand (I1) that has survived the “en-
eral Validity Checks without error must go through o serics ol

Command Validity Checks as controlled by the specific command

(C1) that is input to the simulator. First it is determined if

a CPU address error exists (1). If such an error exicts; that
error is saved for future use, If there is no CFU address error
(101), the command sequence is checked in activity (2), and any
sequencing errors (201) that may arise are saved ir a like manner
as the address error. Check Command Timing (3) works in & simu-
lar manner as (2) and is added for conmpleteness, A timing error
will result in the same error code as a sequence error. If this
module is implemented, the sequence error and the timing error
should be assigned a different error message sc the user can dis-

tinguish %etween the two when they occur.

30

—

pn3e}s eToTUeA ejepdy *|| eandig
2V iepoH
'
2

| Cg o ejepdp
wIoyIed :

[!
BN31E30]
3deIan)d 3senbey ~
e3wpdn _
B
| i pextrnbey A
10T322TI TPON h
30 edf |

augmIejedq
- P\
puUBwmO)
1
puRumO) UOT3E2TITPOKH

€9 BTTEA 20 12 anjiels _

A2 Text: A status modificetion (C1) results from a user command
input. Determine Type of Modification Required (1) analyzes 1t,
or a valid command (€C2) that may havo beon transmitted, to see
what kind of update request (101) 1is necossary. After that we-
tormination has been made, terform Update (&) 15 activated nd

the status information is pacsed to the output modules,

b 2 M-

peITnbay UOTIROTITPCOH JO edA eutwasjed °*2| aJdnfLJd

1V :8poN
3senbay M
e3epdn
10 i ¢ 9s9nbay ;
1_ e3epdp |
gn3e;qg _ :
enggl :
A A “
_ 1g8nbay
i eduwy] IN31939
| pepuUREmO:) 5
ﬁ ,/4/1 eleq
o puUBLIO)
pesy
A
A
8
l 3genbay
ﬁ!.. x aduey)
18enbey sdueyd \\AV\\{ 917 T22dg
snqwlg J9s(l onssl
[
pUREWO) 7z UOT38OTI TPOH
PTTEA gnje3gq
27 10

A21 Text: 1Issue Specific Change Request (1) utilizes the status
modification (C1) that is being performed as a constraint which
detormines whether there should be a request made or not. ‘'When
a valid command has becn transmitted, the command data is read
from it by (2) and the appropriate change request is passed to
(3). With either request, (3C1) or (3C2), as the determining

factor, a particular update request (01) is then issued.

3l

B e & . — T RN, Y — — - - _— NPT W A ———

aywpd) @aoiIsd

*¢C| eandTg

22V :9pPON
4 |
10 snjess
I S — paijepdl .
2TqTessY
\ gaduey)
A A A agesgoay
| n
gnies}s | \m +E3S o
JUaIING /) ~
“\ gsdeggay |
B a— gnjess |
mmn,mxoh
ﬂ ﬂ
.
t l ”
ﬁl _ | gonTe)
- — £ T + LxyswaeTel
\\\u%\\\: — egureys
gaduwey) _ L I K
LajsuaTa], \\ _ ﬁ i
od L1, - 1 !

puewwmoy

s

e

= 20 10
umm:voﬁ\\
e1epdp

e

SSEEORRE

35

A22 Text: An update request that is issued as a result or cither

a user command or a valid spacecraft command, can require telem-
etry value changes to be made (1), status message changes to be
made (2), or both, The changes that arc made are assembled to

form a list of current status data (01) to be used to create an

informative output as a final product of the simulator.

36

ke e

R A N — e p—

I B

SPIOY ADQ 81evasusph *H| eanITJd

¢V :apoN
EDJIOMN AD
_/___., ¢ gs2essoy
10 V 9TOTYsA
- T xadoag
_ mnﬂsumumo_
i
| Y A 930aaxy sousanbag
91 ¥oeds
e
m Z
_ 3I0Iaq
— _ e2uanbag JO
ﬁ gadLl 1971
A
l
. - sI0Iaq
s 1emwIod Jo
W.-Hﬂ..H-Hm H.ﬂ_shﬂh\\ mwnmh_H NmHaH
4 2T IToedg —
= _
ﬂﬂﬂﬂﬂﬂ.@.\.\u. |
PTTEA _ = pUBWW@OD
| “prTesul
$D J0aay __—] l

y3dueTpaoy /L3 Txed

37

A3 Text: An invalid command (Cl1) can be the resu’t of a parity ;
error, a wordlength error, or some type of command sequencing
error. List Types of Format rrors (1) extracts errors listed
as a result of the general validity checks performed earlier.
The specific format errors (101) which are output are used
to aiua in determination of the proper CV words (01) to be pass-
ed., The other constraining factors are the specific sequence E |
errors (3C1), and the valid command (C3) when there are no errors. j
Almost all of the spacecratt commands require a command verifi-

cation (CV) message, whether they be valid or invalid,.

38

gJ0Jd3y 3ewaod Jo sodll 38Tl *¢| sandTg

l¢V ‘epON
¢
10 830339
A!IIIIMIIII 38ewaog
y aTquessy
a\ 'S
8J01J9 3eWJI0] _
oT3Toedg _
4
J0Jaq
s Y2 3ua TpIOH
rozzz £ 39T 5
y3dusTnaca A A "
. J03J7
RyTaed
3811
J0Jaq
£3Ta8d ﬁ A A
_ _ PUBWEOY
| | Z —pTTeAuT
poppm.\\lHWW\LA
y3dueTpaop /L3 Taed 20 1O

A31 Text: A parity error (101) and/or a wordlength error (201)
is listed by Assemble Format Errors (3). The specific format
errors (01) that are ouput are used to create the proper command
verification words that will be placed in the simulated downlink.
This node presents a decompositiorn that is almost down to
the coding level. Even though a small amount of new information

is introduced, it is included to enhance the clarity of the par-

ent node (A3).

gI01ay eduenbeg JO gadll 38TT °9| oandtJd

830433
eduanbag
2T toeds

o

P

2¢7 0pox

830119 pwO
Aaoweld 187F

D
39T I033F
aousnbag
eTquasgy _
A A
¢
8J0IJ73
“*— | eouanbeg
T puBwwoy 3s87]
8.10J1J%
souanbag A
puBwwo)
b4
ﬁ 84a0JduT
R\\w' puewmo)
\\\ 01n255 381
gJI01a% I
pPUBTWO) ©JINJQE
{
ﬁ.lll:ll.lll
8JI0JI3
pRo] Liowep
g gy
_—7
puUBEmO)
PTTeAU]

19

41

A32 Text: An invalid commadn (C1) is generated due to a command
sequencing problem. List Memory l.oad Errors (1) is activated if

the invalid command is an erroneous memory load command., A distinc-
tion is made between secure commands and non-secure commands by
activity blocks (2) and (3). These two types of commands generate
their own set of command verification (CV) codes as a result of
errors, The various sequencing errors that occur during a command
process are assembled in (4) and the specific sequence errors (401)

are used to determine the proper vehicle message codes required to

generate the CV words.

r

godegesy eToTUsp Jedoxd sutuIejzad °/Ll eandTd
gpJIog. AD) 8pION ¢¢Y tepoy
o KM ¥OTIBITITIBA
L pUBmUO)
831BJIRUDYH
. * apooH
“ pUBLWOD
OTFtoeds | ¢
vV BpOf pUBEEO)
9T Toedsg
ojeJausn
A
4
" _| epoD Joxagy
jewz0q
- \ 83BIBUAY
10137 3eWI0L A
L
apon) J0II3F
T -nmﬂ\\b T et —, aouenbag
apoy muunnnmmk
J0XIg esUanbag
b
2J0J3.I19 gJI0139
puswmoO 1ewI0y eouenbsg
PTTEA 91JToedg 2TJToedg
€9 29 LD

43

A33 Text: The specific errcrs, (C1) and (C2Z), that are generated

by an invalid command, are used to control the gereration of the
applicable error codes in activities (1) and (2). If a vallid com-
mand (C3) is processed, Generate Specitic Command Code (3) is Aacti-
vated to provide the regquired code for Generate Commend Verifica-
tion Words (4). All of the codes generated contribute to the crea-

tion of the appropriate CV words (4O1).

R T—

B e D i il i

- S

— — — T s o —— & iiﬁiﬂ
gedesgsp ndinQ 23€0I) °gl 9anITJ
= ¥ -0pON
10 18T
-] adevgg ol
\“\ sTqUogIY
/
gedwvossy » »
andano : UOT38OTITPOM
snilelqy
! ¢ gutisTI N 29
_,...I.|||].r . qu‘mgo e — I
edwgga; SR
npoJg
ejepd) =niwig mw poid
wn\
. o
{
I
\- - o gpJIOM AD
advggsy] \QMV‘ aj3vTauUERI]
uot3edFITIon
puewmo) +
\ ! 8pION
AD
S
pueamog = | 1 X
PETEA gnielg
.qusJIany

T L R e
s i — P A

i e e e e e L

£y
)
¥
¥
¥

AL Text: CV words (Il1) are input to Translate CV Words (1) in

a 16 bit hexidecimal code, The woerds are translated, and the

CV mesoage (101) that results is determincd by the currert sta-

tus (C1), and the valild command that may be present (C3). The)
status modification (C2) inputs to lroduce Status Change Tisting

(2) and, undsr control of the current stotus, a list of status

changes (201) is produced. These status changes, combined with

the CV message, aid in producing a meaningful output message (01). A

: 46

Data Mcdel

Again, as with the activity model, it is recommended thet

the following "node index" be scanned for an overview of the de-

composition.

Node
D-0
DO
D1
D11
D12
D13
D1k
D15
D2
D3
D4

Title
Simulator Data
Simulator Data
Input Words
Spacecraft Uplink Word
Format Errors
Status tModification 'Word
Formatted Spacecraft Command
Sequence Errors
Current Status Data
Vehicle Message Data

Output Messages

L7

Page
48
50
52
54
56
58
60
62
3
66
68

B e E———

BiRq 23BTNUTS *6| SandT4g

0O=-q :epoN
k
]
sefessal pJION i
3nd3no 3utad i3ndul pec]
llllrll\ viva — 1_\ 2
HOLYINKIE
A A A .
pusmmoy p J- andug
Jo edLl suimIejeqg Jo edf]l eurmisjeq
-
JI0XI5
Jo edL] euimIejeq

D-0 Text: Tuhe input activity that creates or modifies the Simulator

Data is the iloading of the input word (Il1). 'What is done as a result
of the input word is constrained by the determination ot the type

of input word loaded (C1), the type of error (parity, wordlength,

or sequence) that exists (C2), and the type of spacecraft command
that is transmitted (C3). Any input that is loaded results in the

printing of an output message (O1) for user information.

49

ki sk Ty, o

m»mm sjeTnNuUTg °*07 8IndiJg

— e - P

Oq :epoN

gsdegga}]
BT2THaA

1& gadegga}]
i 3ndyng
i
: = JaATTa(q

Jmf

wwmmmmmz
3ad3ng T
Jutad eqeq
a8eggay]
8TITYaA
A A
Z
R ' ejeq E— PUSTWC] PITEA
P gn3es3qg BEE830J4 Q
geduweyy __— 1UBIIND e o
8N31831S JOATTLQ _ pPICH
andul pwe]

T
. L L[|
\ e " B apIoM v —
= ol :
puURWLO) ncﬂuduﬂuﬂuGM\hmﬂa .

A A A
PTT®AUI 88820 8N38}g WIOJJe
. J0IIF O I uhuﬂnu”mmw
. ad Ll eutwasjaq |, —#rtmzejeq
wewmo mthh\Lﬂ 4a
. 2.3 €220 12

edL], euTwIsjeq

DO Text: An input word is loaded (Il1) which is either in the

form of a user command or a spacecraft command. The Input %Words
(1) that are created are then used by one of three possible act-
ivities. The activity that uses thLe Input Word is cons*trained
by the type of input word (Cl1), iype of error (C2) that nay ex-
iot, and type of comimand (C3) that .ay be present,

If the input word is a user ccrmand, some type of ctatus
modification or vehicle information uvdate wil. be p.rformed (101).
This results in either the creation of some Current Staturs Data
(2), or a change to some data that already exists. 1If a space-
craft command is input, either an invalid or a valid command will
affect the Current Status Data.

The valid or invalid command process determines what type
of vehicle message will be delivered (301). The Vehicle llessage
Data (3) is shown withcut an input process to creute it. This
data will have been created as an external function and will re-
side in the simulator for access. The data consists of command
verification and error codes that will never be altered as a
function of the simulator.

The status changes and vehicle messazes created during the
command process are assembled as Output Messages (4) and used to

rrint output messages (01).

51 |

————— —— —— ——

odfy eutwiejed 20

gpIoM 3ndul -_n aInd T4
- . - S \d :epoy
e
p— puenmog
- SJ0J37 - 0FFToadg
-4 asuanbeg _ 8590034
| 4
zog A
pTTEAUT
unnuahm Nooid ﬂnmsﬂnu
U.\w — -
e 4| 9J0II3 | .uwah.u.m paIopy
7 | *bsg nﬁb.ﬂ._“mn. r% A andul pwoT
- f€ _ N‘
| L pIop | H
u ==t -ﬁu: —— - !
/n | anje3g
WOT3EITITPOK *
sN3¥35 WIOFJIad
| =]
10 . \ . - pirewmog
/ gpIop _ 8I0IIy pe138mIog
anduT | i 103 18WIOT ot
gs020dd | 1eWI0g JOATTAC |NL e\
_ o
DIoy
L _ N T surtda™TT 1Y
| 5/8
puemmOg FO
edL] nqﬂﬂnunl e
paoy
| J0IJ7q Hw\M\L anduy jJo 8

sufmre3sd 19

52

3

D! Text: If the input word (I1) is a spacecraft comwand the Space-
f craft Uplink word (1) is created. If it is a user command a Status
Modification Word (3) is created. The Status Modification Word
is used to perform the particular status modification (301). The
Spacecraft Uplink Word (1) is delivered in the required format to
create a Formatted Spacecraft Command (4) and Format Errors (2) if
they exist. The Formatted Spacecraft Command is used to process
the invalid command (402) or it is delivered as a specific rcommand
which generates Sequence Errors (%5). Sequence [Lrrors are fod back
b to the Formatted Spacecraft Command (4) and used to process the

invalid command.

L;-.:nu..—.ua-..g..._:a.u...-.._.a._ Lo [P— S

e S—

hH|||||||MlIIIIIlIlIIllIIIIIIllI|ll]llllIillJI]lllllllllilllllll!.llJ_

gpIcy NurTdg 3jjedoeswdg *gz eJIndTd

SpUewwos)
pajremIog

-

4

PUEWmO]

Pa339WI0T IsATTeq

|

pJION PUSTWOY
r—

1emI0d

L1ad ==2pol

BJICH

sndur pwoq
3 /

PIOM

pIOM uuua\r

JEUIO]

] w3 1T
Hutrrdn

paog anduJ

Jo edf] suTwIejeq 19

54

L

D11 Text: An input word will either create an Uplink Data Word
(1) or an Uplink Command Word (2). Whichever of the two is cre-
ated, it must be placed in the proper format and wordlength to

be used by the simulator. After the Formatted Comnands (3) are

created they are delivered for further processing (01).

55

%—1

.

81013 1BWIO] °*¢2 oJIndTJg

B8]

= T J0JIT

A

8I0II7 .
18WI0] JOATTS(q

mhunhm\uWM%

£3739d JeATTed

- -

J0IIy FO

edf] sutwieje(q

2ia :epcN
|
hoo =y g9JI0IIT
Y3dusTpaon JaATTeq
2
r FIOTIY |t
q38uaTpIopn)
[
1
gJ0IIY LI
£ytaeg
L + puUREmOn ﬁma

-18WI04 88820Jd

(]

56

D12 Text: When processing the formatied command (I1), parity and
wordlength are checked. The occurrence of either or both types
of exrrors results in the creation of Parity (1) end/or Wordlength

krrors(2). These errors are then used tc create the Error Data (3).

57

T Y Thmm— e ol Ml = o

pJIOM UOT3EITJTPOW 8nje3s °*he eandid

¢1d :epPON
]
_ UOTICOTITPON
_ an3839 wJojaed
| ;
_ 1 o.A UOT3eRIOFUI
UOTFI®ITITPOMH
| paon R
andul pweorl
3genbey \\\\\\“\\Lv 1
UOTFIBeOTI TPOH 880001 ﬁ 1genbey
uOT38OTITPOH= e
8138139
|
paog 3nduy 2O
oedL]. euTwIejeq
10

<

D13 Text: After it has been determined by (C1) that the input

word (Il1) is a user command, a Status Modificetion Request (1
is created. This request is then processed to determine the par-
ticular modification required, and the Modification Information
(2) is created to be used to perform the modification (01).

It should be noted at this time that much of the software
required to perform the modifications or updates to the simula-
tor may already exist. The node is included as a reminder that

the function must be incorporated in the simulation.

29

—————— = — —

puewwac) 3JeJIosd2edg pea33IvBEICI °*G7 2andT4

¥1qQ :epON
i paewEo)
93IT1oeds [.
-‘J
I04113Q .
ﬁ. 9T2toedg .
P L. 3 |
rert b pPURWEO)
. ! a2mpiduo
i . \ pejuswiiduog
/ * L pIoy ®38Q
! PJIOK vndnwou o % 3usutrdmo)
puw@Eop PTTeAUIl 88620Xd
88090Jd .
| , 2
PJICK -
N = _ v38]
piog =3vq =" puremo
i PFIEosts dsatTad a Ak pe3iewIng JIaATLeq
_ i , ./M,./
| PIOK 98IPPV_s— % ___ |] _, _
_ jusmTTdwo) < pIoK,
ﬁ - | ” §80IPPY
N pJIOY ©-.0JPPV X

2T72Toedg J0ATT

-

\ "

1

~—pr

2020 10

“ _ e®nJOf |
. «\AWW»ﬁﬁma

EUBTWO] J0_ \% . 8JI0JI7 |

H ed/f] eulwI9je(¢ oouo:wmm_

|

!
8I033I%

JoATTIeq

60

Di4 Text: The formatted command (I1) is made up of an Address
Word (1) and a Data Word (2). The specific content of these

words is determined by C1, C2, and C3. Many dilferent things
could be the cause of a particular commard to be complimented.

The complimenting is dependent upon the type of command word pre-
sent, and on the existance of some kind of error in that command.
It is also dependent upon any combination of the two circumstarces.
The same constraints apply to the complimenting of Lhe Data Word
(2)s« The Complimented Command (3) created by bhoth the address
word and the data word is used to further process the invalid
command (301). By knowing a priori which commends are to be com-
plimented and which commands are not to be complimented, a means
of detecting commanding errors is vrovided., The Specific Command i
(4) is made up of a good address word and a good data word. It 1

must be processed (401) to determine if any sequence errors oxis*,

61

230137 22Uenbag °*9z aInIT4

edLil eulmieje(q)

ﬁ | o G1a :epoX
r " |._
N pusmmoy [)
CEREES O F G i _
| puRETO)
| PTT®A ssad0id
_
¢ I0I39
, T o 3 eouanbag e —
x\\u“\: pUBREWO)
gJI0IJ%
#oUsnbeg JeATTa(] A
¢ e 10333
PUBRWEOD ==z —
elnseg puewwWo)
913 1oedg
Y Y A ggs20ad //AH/JV
: L
| J0J1I3
‘ pPEO] T1

! 8J0IJE JOATTeq J0 Kaomen
“ PURPWIO) £8690xd
| |
! \. L
“ 0139 JO

D15 Text: After a command is found to have no parity or wordlength
errors, it must be checked for proper sequencing. I{ a sequence
problem is detected, either a Memory lLoad Error (1), a Securs Com- J
mand Error (2), or a Command Sequence Error (3) is produced. When 1
these errors are created, they are delivered (301) back to the pre-
vious node (D14) for further processing. When a command is received
that has no sequence problem, an Error-Free Command (4) is created

and used to process the valid command (h02).

———

v3ied gn3eg4g

qusgInd */.2 eanITJd

- wmmmmuw
gadley)

8N383}S JeATTeq

g3uT3sT]

gsaduey]
£1qomaTe] wIoyisd

L\\

snjejg
eToTHeA

3

gentep

3UTod
L£xjemeTe]

2d@ :9pON

puewwmos)
PTTeN 889820xd

uO0T38OTIFPOH
gsnjelg wWIOyIed

64

D2 Text: Telemetry Foint Values (1) are the main source of sta-
tus information. A valid command (I2) rust be prccessed to de-
termine which telemetry indications are affected by its execution.
Once the telemetry changes are performed (101), they are used

in the update of the Vehicle Status Iistings (2). The status
changes (201) are then used to aid in compilation of the output
nessages. Performance of status wmodifications (I{) requires the

same data processes as above.

65

e

——— e

Ot o

eled o3v3sel OLOTYOA *Q2 oandTg

go¥BIso oTOTYeA
I0ATTeq

¢a :epoN
4
gefeggay
JoIxy
A
= :
mmmwmmmi
o UOT3B2TITI0
ﬁndssoﬁ

| =_ puemwoy

puUemmo PFI¥A 88@8201g

PTI®AUI sge20dd ¢o 1D

66

D3 Text: The processing of a valid or an invalid conrand causes
the delivery of a command verification (CV) message (101)., These
messages are derived from a file of CV codes that are available
for access during simulator use. The invalid command also ac=-
cesses error codes that are on file for creation of proper Error
Messages (2). These vehicle messages are passed on be assembled

into a meaningful output message,

67

gafeggsl 3ndin0 *62 sangTg

%d oPON
&
5"4' 1817 g
/ oIvEgoN
gedeggol
Ind3no
JutTad
-4
N -
863Rggo |E—
oTOTYeA ,/// L2 3
gedesael
9T2TYyeA JeATTIeq
\u
1871 . '
edesze eTquUessy — B0JUBYD | g o
snjess /4/ I
geduey)
snjejg JeAlie(q

as a result of spacecraft command or user command processing. A

Message List (3) is created which is comprised of all the ucer or

D4 Text: Status Changes (1) and Vehicle Messages (2) are created !
|
P

vehicle generated changes that have occurred as a result of a com-
mand, This Message List 1s printed (01) for use by the system op-

erator.

69

B — —

Summary

After a brief introduction and explanatior of some diagram
syntax, this chapter presents the activity and data models of the
simulator. They are given as a complete functional specification
of the software. None of the box titles or arrow labels are bind-
ing, however, and in the design refinement of the next chapter some
names and labels are changed to better meet the software engineer-

ing goal of understandability.

70

IV. Design Refinement

Introduction

In the previous chapter, a top-down design strategy is used
to create activity and data models which identify a basic design
structure, To better prepare the design for easy implementation,

a structure is needed which reveals the relative '"goodness" of the
design. This gcodness is measured by observing the following at-
tributes: (1) coupling, (2) cohesion, (3) span of control, and (&)
scope-of-etffect/scope-of-control (Ref 10:340). If two modules are
totally independent of each other, and one can function completely
without the other, then they are loosely coupled, or uncoupled.
Loosely coupled modules are more maintainable than tightly coupled
modules., Low cohesion occurs when an isolated mocdule has internal
elements that are loosely related. Cohesiveness and coupling are
interrelated. The greater the cohesiveness of individual modules,
the lower the coupling between any pair of modules will be (Reft
10:144). Excessive span of control is bad because it indicates

too much decomposition of a module into subordinates. This is
caused by a failure to identify intermediate levels of abstraction.
Finally, scope-of-effect/scope-of-control should be examined to

get a measure of how well the system has adhered to the subordinate
structure required of any decision process: all modules that are
affected by a decision (scope of effect) should be subordinate to
(scope of control) the module which makes the decision (Ref 10:240).
To recogniz: and isolate the existence of these effects, and then

to eliminate them with a design refinement, a technique is ~2mployed

7

which is based on a top-down, structured design strategy called

"transform analysis.!" This strategy should lead to system estruc-
tures which are fully factored and ready to code (Ref 10:254).
Transform analysis produces a "structure chart'" which reveals
design goodness measures, The structure chart contains modules
arranged top-down and left-right which represent the prccessing
functions of the system. The first step is the restatement of the
problem as a data flow graph or '"bubble chart.'" The basic elements
in a bubble chart are called "transforms" which are represented
by circles labeled with short descriptions of the transformation.
Interconnections between transforms are labeled arrows which rep-
resent "data elements" to be transformed. Two or more data elements
required simultaneously by a transform are indicated with an aster-
isk ("*") between the data elements. The "ring-sum" cperator ("a8")
is used to denote exclusive-OR relationships between data elements.
Bubbles and arrows are drawn which represent input branches and
output branches., These branches are connected by bubbles that are
the "central" transforms of the system. The second step is to iden-
tify "afferent" and "efferent" data elements. An afferent data
element is an input to a central transform and an efferent data
element is an output from a central transform. The third step is
top~level factoring. A "main" module is epecified and it is decom-
posed into afferent, efferent and central mocdules. The fourth step
is the decompositicn of the afferent, efferent and central modules.
The top-level modules and their subordinates form the "first cut
structure chart." Finally, the first cut structure chart is exam-~

ined for goodness and revisions are mads to produce the f{lnal struc-

72

ture chart (Ref 10: Chap. 10).

After the preliminary design is complete the first cut struc-
ture chart is drawn from the activity model, bypassing the creation
of a bubble chart. This decision is based on the conceptual resem-
blance of the activity model to the bubble chart in that both tie
activities together with data elements., Reference 3 explains a
method of design which creates an "intermediate" bubble chart froz
the first cut structure chart. Iterations of bubble-to-structure-
chart and structure-to-bubble-chart transformations are made to
further refine the design. This iterative process advocates start-
ing with a structu . chart and then creating the bubbtle chart for
the transform analysis.

In the remaining sections of this chapter, the first cut struc-
ture chart is constructed as a direct translation (input for input,
output for output) from the activity model in Chapter III. The
afferent and efferent data branches are identified to aid in con-
struction of the intermediate bubble chart. Finally, a "refined"

structure chart is constructed and examined to determine the rel-

ative goodness of the Jesign.

First Cut Structure Chart

Figures 30a, 30b, 30c and 30d illustrate a direct translation
of the activity model of Chapter III to a structure chart. Deci-
sions and loops are not identified at this time; they are included
in the refined structure che : derived later. The number to the
left of each arrow identifies the input and output parameters listed

in Table I. Controls are not indicated in this list because they

73

:
;
:
[
)

v

Rl = L L e

e

3Jexdecwdyg
LEL a4 54

31IBYD 98IN3ONIZC 300 ISJITL °*®Of andTS
_ _ 2p2oL | | paoz) pang) pave || pana
i Fays1l ﬂuuu|uon 392Ip3Y wITIag gsdhy EEY TR pUwWETOD andzr 3=du] oL *tdn P
{pawe=an| | purzzng agc 1cziny ac1:3 4 -2493 *3eEICI | | JO F1%H, | Jo FUWH ¥nyvy
“ xu-ru__ R 9] “2%42 1] .u-umn_ 233 %3842 €JI035 uz vnmm_ RE| peey [FLTET
/ H« f 7 ¥ 7 \ “
114 jer? Nu ____m.m /ww %2 2 //nm _mm 12 oz
\ 1/ |
842343
L31p7194 pEEEwNag
puw==oQ 3ividasndg
mIofInd 1vRIOL

4

B b i i

dme e o Al s e

antw3g eToFUer e3updn *q0% 2IT3TS

“ mms.ﬂmb_
gnielg| |8dessoyl La2a
pesepdf gn3e1s ~u2T78]
pTEEIS3T adweysd 2Z2uvyd

1// A
e 927 e
e3epdl
wI0Fa9d
~

s

335n0bsE .
sveranl | wieq | |F23I008
gnieig jededziiite] 5 o

engs] PE3: ﬁuwﬂmm
_J
> »
_f _
\he 44 4

®TOTUOA

gn3ess

eqepdn

75

IPIOR AD

=T
| pmﬁm~ | | saoxay 8JI0JJIH
_ 8J0117| |pueEmo) peO1
unﬁjﬁoo eaoUsnbag ednoeg Lxomey]
WH£Q®mm¢ f 1971 1871 39T1
> A
\
- - 3p0D ‘vnou r mnmmd 1971 8I0II3
_ spaod puezuUsS] 0217 _ JI0II%T J0xJa3g! (qa3l2ust 8I0JITT ﬂ
| AD 0TI Tosdg enI03 souanbeg 1BWI0] | -pacy | | £3TTed
wuuhmnam muwhmnmﬂ uumgwnm; quhonom Anaowmd 3971 15T
» Y Vi A
N o
Bt A EA| Gh AL BN A BVAN S o% 6¢ Bt
95p0Y | i
adeggsl gI0aIX 8JI0II9
*gop Jasdould eousnbag JO 38WJIO0S JO
eUTWIS39(Q gedsl 318F1 god&L 38T
4
1 /g1l 4
gpJION
AD
e3Eal]

76

Create
Qutput
Messages

Y

Translate Produce Assemble
cv Status Message
Words Change List
Listing |

Figure 30d. Create Output Messages

are not considered when creating a bubble chart for transform anal-
ysis. However, a control element in an activity module may be used

as an input element in a bubble chart.

Intermediate Butble Chart (Data Flow Graph)

The bubble chart transforms "conceptual inputs" into ''concep-
tual outputs,"” which implies that the detail in the structure chart
may be higher than in the bubble chart (Ref 3: Chap. &, p. 25).

A scan of the parameters in Table I shows some repeated input and
output names that may have to be altered to clarify the data flow.
If there are any errors in the structure chart, they should be cor-
rected while drawing the bubble chart. Looking at the top level

in Figure 30a, the afferent data branch is recognized as that branch

which consists of the subordinates of the Process Input Word module.

P S —

Table I

First Cut Structure Chart Parameters

Input

Output

W OoO\ITA\NF NN —=

—t —a
P Ye)

——t b e =l csd cad ced b
W OoO=J0\nN+E N

#‘#‘#’\N\N\N\N\N\N\N\N\NSNNNNNNNNNN
N=20VoeEe~I0NNFUVIN-—OWVWOINFEFEWN—=-O

£ &
+ W

£ e
0o =3 O\n

Input Word

CV Words
Input Word
Input Word
Formatted Cmd
Formatted Cmd
Formatted Cmd

CV Words
Status Mod

User Cmd

S/C Uplink Cmd

Input Word
Input Word
Formatted Cmd
Formatted Cmd

Formatted Cmd
Formatted Cmd
Formatted Cmd
Formatted Cmd

——————————
S —— — ———
— o o - -
- o - g v - - -
e G0 GO e Gy s sty

- o o e e o =

Status lMod, Invalid Cmd, Valid Cmd

Current Status

CV Words

Dutput Messages

Status Mod, S/C Cmd

Formatted Cmd

Format Error

Invalid Cmd, Specific Cnd

Invalid Cmd, Valid Cmd

Update Request

Current Status

Specific Format Errors 1
Specific Sequence Errors ‘
CV Words

Command Verification Message

Status Update Message |
Qutput Messages |
Status Mcd Request '
S/C Cmd

Status Mod ;
S/C Data |
S/C Address

Formatted Cmd

Wordlength Error

Parity Er-ror

Format Error

Erroneous Cmd, Error-Free Cmd
Command Words

Address Error

Sequence Error

Command Words

User Status Change Request
Commanded Status Change Request
Update Request

Telemetry Changes

Status Message Changes

Current Status

Parity Error

Wordlength Error

Specific Format Errors

Memory lLoad Errors

Secure Command Error :
Command Sequence Errors 1
Specific Sequence kErrors *
Sequence Error Code
Format Error Code
Specific Command Code

CV Words

Tn Figure 304, the efferent data branch consists of the subordinates
of Create Output Messages. This leaves Update Vehicle Status and
Create CV Words as the ceatral transforms. The afferent data brauch,
which identifies the major input data flow to the central transforms,
is5 the first to be drawn in the tubble chart. Following that branch
down to its lowest level, the first input parameter seen is a "User
Cmd." It is the input to Read Status Mod Word and the output is

a "Status Mod Request." This identifies the input, first bubble,

and output in this portion of the bubble chart. To locate the next
bubble, the module which uses '"Status Mod Request" as an input must
be found. It cannot be located as an input in Table I, but it may
be a control element in the activity model. Looking back to Fig-
ure 6, which is the activity ncde that contains the modules of in-
terest, "Status Mcd Request' is a control on Perform Status Mod.
"Status Mod Request" <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>